Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides
نویسندگان
چکیده
The transcriptional regulator PlcR and its cognate cell-cell signalling peptide PapR form a quorum-sensing system that controls the expression of extra-cellular virulence factors in various species of the Bacillus cereus group. PlcR and PapR alleles are clustered into four groups defining four pherotypes. However, the molecular basis for group specificity remains elusive, largely because the biologically relevant PapR form is not known. Here, we show that the in vivo active form of PapR is the C-terminal heptapeptide of the precursor, and not the pentapeptide, as previously suggested. Combining genetic complementation, anisotropy assays and structural analysis we provide a detailed functional and structural explanation for the group specificity of the PlcR-PapR quorum-sensing system. We further show that the C-terminal helix of the PlcR regulatory domain, specifically the 278 residue, in conjunction with the N-terminal residues of the PapR heptapeptide determines this system specificity. Variability in the specificity-encoding regions of plcR and papR genes suggests that selection and evolution of quorum-sensing systems play a major role in adaptation and ecology of Bacilli.
منابع مشابه
Activation of the latent PlcR regulon in Bacillus anthracis
Many genes in Bacillus cereus and Bacillus thuringiensis are under the control of the transcriptional regulator PlcR and its regulatory peptide, PapR. In Bacillus anthracis, the causative agent of anthrax, PlcR is inactivated by truncation, and consequently genes having PlcR binding sites are expressed at very low levels when compared with B. cereus. We found that activation of the PlcR regulon...
متن کاملA spontaneous translational fusion of Bacillus cereus PlcR and PapR activates transcription of PlcR-dependent genes in Bacillus anthracis via binding with a specific palindromic sequence.
Transformation of Bacillus anthracis with plasmid pUTE29-plcR-papR carrying the native Bacillus cereus plcR-papR gene cluster did not activate expression of B. anthracis hemolysin genes, even though these are expected to be responsive to activation by the global regulator PlcR. To further characterize the action of PlcR, we examined approximately 3,000 B. anthracis transformants containing pUTE...
متن کاملCodY Regulates the Activity of the Virulence Quorum Sensor PlcR by Controlling the Import of the Signaling Peptide PapR in Bacillus thuringiensis
In Gram-positive bacteria, cell-cell communication mainly relies on cytoplasmic sensors of the RNPP family. Activity of these regulators depends on their binding to secreted signaling peptides that are imported into the cell. These quorum sensing regulators control important biological functions in bacteria of the Bacillus cereus group, such as virulence and necrotrophism. The RNPP quorum senso...
متن کاملplcR papR-independent expression of anthrolysin O by Bacillus anthracis.
Cholesterol-dependent cytolysins (CDCs) are secreted, pore-forming toxins that are associated with pathogenesis in a variety of gram-positive bacteria. Bacillus anthracis produces anthrolysin O (ALO), a CDC that is largely responsible for the hemolytic activity of culture supernates when the bacterium is cultured in appropriate conditions. B. cereus and B. thuringiensis, species closely related...
متن کاملDistinct mutations in PlcR explain why some strains of the Bacillus cereus group are nonhemolytic.
Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis are closely related species belonging to the Bacillus cereus group. B. thuringiensis and B. cereus generally produce extracellular proteins, including phospholipases and hemolysins. Transcription of the genes encoding these factors is controlled by the pleiotropic regulator PlcR. Disruption of plcR in B. cereus and B. thuringiensis...
متن کامل